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Abstract A natural generalization of the selfish routing setting arises when some
of the users obey a central coordinating authority, while the rest act selfishly. Such
behavior can be modeled by dividing the users into an α fraction that are routed ac-
cording to the central coordinator’s routing strategy (Stackelberg strategy), and the
remaining 1 − α that determine their strategy selfishly, given the routing of the coor-
dinated users. One seeks to quantify the resulting price of anarchy, i.e., the ratio of
the cost of the worst traffic equilibrium to the system optimum, as a function of α. It
is well-known that for α = 0 and linear latency functions the price of anarchy is at
most 4/3 (J. ACM 49, 236–259, 2002). If α tends to 1, the price of anarchy should
also tend to 1 for any reasonable algorithm used by the coordinator.

We analyze two such algorithms for Stackelberg routing, LLF and SCALE. For
general topology networks, multicommodity users, and linear latency functions, we
show a price of anarchy bound for SCALE which decreases from 4/3 to 1 as α in-
creases from 0 to 1, and depends only on α. Up to this work, such a tradeoff was
known only for the case of two nodes connected with parallel links (SIAM J. Com-
put. 33, 332–350, 2004), while for general networks it was not clear whether such
a result could be achieved, even in the single-commodity case. We show a weaker
bound for LLF and also some extensions to general latency functions.
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The existence of a central coordinator is a rather strong requirement for a network.
We show that we can do away with such a coordinator, as long as we are allowed
to impose taxes (tolls) on the edges in order to steer the selfish users towards an
improved system cost. As long as there is at least a fraction α of users that pay their
taxes, we show the existence of taxes that lead to the simulation of SCALE by the
tax-payers. The extension of the results mentioned above quantifies the improvement
on the system cost as the number of tax-evaders decreases.

Keywords Selfish routing · Stackelberg strategies · Price of anarchy

1 Introduction

We study the performance of a network shared by noncooperative nonatomic users.
Every selfish user needs to route an infinitesimal amount of flow from a specified
origin to a specified destination node. Let f be a flow vector defined on the network
paths, which describes a given traffic pattern according to the standard multicom-
modity flow conventions. Every path P has a latency function lP (f ) which expresses
the disutility (delay) experienced by all users on the path due to the aggregated flow
of all users using some edge of P . Each selfish user wants to choose a minimum-
latency path from her origin to her destination node. The user interaction is modelled
by studying the system in the steady state captured by the classic traffic equilibrium
concept [24]. The traffic equilibrium is characterized by the Wardrop principle: for
every origin-destination pair (si , ti ) the disutility on every used si − ti path is equal
and less than or equal to the disutility on any unused si − ti path. Hence, in equilib-
rium no user has an incentive to unilaterally switch paths. There is a large literature
on traffic equilibria in transportation science, see [18].

Selfish behavior induces inefficiency from the system perspective. Motivated by
decentralized data networks, Koutsoupias and Papadimitriou [13] were the first to
propose as a measure of this inefficiency the worst-possible ratio between the system
cost of an equilibrium and of an optimal routing designed by a central coordinator.
This ratio is called the the price of anarchy. In the context of selfish routing, we de-
fine the system (social) cost as the total latency of the users. The price of anarchy
for selfish routing was studied in the seminal paper by Roughgarden and Tardos [20].
They showed that for linear latency functions the price of anarchy is at most 4/3,
and this is tight. For arbitrary continuous latency functions the price of anarchy is
unbounded [20]. Several other results have pinpointed the price of anarchy ρ(L) for
various families L of latency functions [6, 17, 18]. See the recent survey by Rough-
garden [19] for a comprehensive overview. Parameterizing the price of anarchy solely
by the latency type is legitimate: under mild assumptions the price of anarchy is in-
dependent of the network topology [17].

These results refer to one extreme of selfish routing, namely to the case where
all users are selfish. The other extreme is the system optimum where all users are
coordinated and follow the predetermined optimal routing. The natural question that
arises then is: what happens when only a fraction of the users are selfish, while the
rest follow a predetermined policy? Are there such policies that can always improve
the price of anarchy, given that a non-zero fraction of users can be coordinated? If so,
how does the improvement depend on this fraction? For example, if the improvement
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is insignificant even when almost all users are coordinated, then such a policy is
obviously of little value. Issues like these are important for real networks [12], since
in general, it is quite possible that they do not fall in one of the two extremes, but that
their users are a mixture of selfish and coordinated ones. As we shall see, surprisingly
little is known for such networks. In fact, the only case that has been thoroughly
studied, even for the case of linear latency functions, is the case of a network with
two nodes connected by a number of parallel links [15]. To our knowledge, the current
work is the first that deals with the issues above for general topology networks, and
with multiple origin-destination pairs for the users (multicommodity case).

Stackelberg Routing Our main results deal with Stackelberg routing, a notion first
proposed by Korilis, Lazar and Orda [12]. An α fraction of the users are coordinated
and the rest are selfish. The coordinated users are controlled by a coordinator who
assigns them to routes computed by an algorithm of choice. This algorithm is the
Stackelberg policy. Let f̄ be the corresponding flow vector output by the algorithm.
The remaining 1 − α fraction of the users choose paths selfishly by taking into ac-
count the specified routes of the coordinated users: if the selfish users reach a traffic
pattern x, they experience latency lP (x + f̄ ) on a path P . The concept is inspired by
Stackelberg games (see, e.g., [2]) where players are asymmetric and are divided into
leaders and followers. The followers react rationally (in our terms selfishly) to the
strategies imposed on them by the leaders. An important difference between Stack-
elberg games and Stackelberg routing is that in the former setting, each leader is
selfishly interested in her own individual utility. In Stackelberg routing, coordinated
users aim to improve the social cost.

A given Stackelberg policy σ induces an associated equilibrium in which the
Wardrop principle holds for every selfish user. This is a Stackelberg equilibrium.
Given a Stackelberg policy σ , the worst-possible ratio between the cost of a Stackel-
berg equilibrium, and the minimum total latency is an expression that should depend
on α, and we call it the price of anarchy curve of σ. For convenience, we treat the
price of anarchy curve interchangeably as a scalar (if one thinks of α as fixed) and as
a function (if one thinks of α as variable). Let L be the family of latency functions at
hand. Clearly (i) the curve of any policy σ passes through the points (0, ρ(L)) and
(1,1). Conceivably, for any ‘reasonable’ Stackelberg policy (ii) the curve also has to
be a continuous nonincreasing function of α. We call a curve fulfilling Conditions (i)
and (ii) normal.

Previous Results on Stackelberg Routing As mentioned above, rather little is known
for Stackelberg routing. Roughgarden [15] defined two natural Stackelberg policies
SCALE and Largest Latency First (LLF). SCALE simply sets the flow on every path
equal to α times the optimal flow f opt. LLF in the context of parallel links orders
the links in terms of their latency in the optimal solution and saturates them one-by-
one, from largest to smallest, until there are no centrally controlled users remaining.
Roughgarden [15] not only obtained normal curves for LLF on parallel links but he
also proved the optimality of LLF for such networks with linear latency functions.
More specifically he obtained a 4/(3 + α) price of anarchy for linear latency func-
tions and a 1/α bound for general latency functions. Both bounds are tight [15].
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For non-linear latency functions, there are examples of four-node networks where it
is impossible to achieve the 1/α bound (Proposition B.3.1 in [16]). On multicom-
modity networks the performance can be arbitrarily bad for latency functions with
negative coefficients [18], but we do not consider such functions here. Obtaining a
4/3 − ε guarantee for linear latencies or a bound weaker than 1/α for general latency
functions are mentioned in [15] and [19], respectively as open problems, even for the
single-commodity case.

Our Results This paper establishes for the first time the existence of a normal curve
for Stackelberg routing with linear latency functions on general multicommodity net-
works. This should be contrasted with the earlier results that applied only to the
single-commodity parallel links network [15].

More specifically, we analyze SCALE and a version of LLF which we call strong
LLF (cf. Sect. 2) for linear latency functions. For SCALE, our price of anarchy curve

is 4
3 − X

3 where X = (1−√
1−α)(3

√
1−α+1)

2
√

1−α+1
. See Fig. 2 for a plot. Hence we show that

a very simple policy to implement (SCALE) achieves a very significant improve-
ment of the price of anarchy for the linear latency case. In view of the simplicity of
the policy (SCALE) that achieves such an improvement, it is rather surprising that
virtually no progress has been made since [15] appeared. One possible explanation
is the fact that our analysis examines the network as a whole, and avoids the edge-
by-edge bounding that has been the staple of classic results on the price of anarchy,
e.g., [6, 17, 20]. The technical machinery that makes our approach possible is the
analysis of selfish routing by Perakis [14]. We use the special structure of SCALE in
order to relax one of the “hard” constraints that the bound of [14] needs to satisfy.
Moreover, we demonstrate that our upper bound analysis for SCALE is nearly tight
for every α, by giving a set of linear latency functions on the Braess graph for which
SCALE performs very close to our upper bound. More details appear in Sect. 3. Our
analyses of SCALE and strong LLF can be extended to general latency functions us-
ing the concept of Jacobian similarity [14], a notion adapted from Hessian similarity
in interior point methods [14, 22]. The latter approach, which is outlined in Sect. 5,
has the potential of yielding bounds that are specific to individual families of latency
functions.

For parallel links Roughgarden [15] gives an example where LLF outperforms
SCALE. On the other hand on the instance of the Braess paradox (cf. Sect. 4), SCALE
outperforms LLF. Finally on our hard example for SCALE (cf. Sect. 3) which shares
the same underlying graph with the Braess paradox, LLF outperforms SCALE. Hence
the two policies are incomparable, in the sense that no policy dominates the other on
all possible inputs. The three types of instances we described suggest that in order
to achieve the best possible curve, both the network topology and the latency func-
tions matter. Although this appears to be in stark contrast with the independence of
the price of anarchy for selfish routing from the network topology [17], it should
not come as a surprise: Stackelberg routing has an algorithmic component which is
lacking from “traditional” selfish routing.

Selfish Routing with Tax Evasion The existence of a central coordinator is a rather
strong requirement for a network. A well-studied alternative for mitigating the effects
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of selfishness goes back to the origins of traffic equilibria (see [3]): impose monetary
taxes (tolls) per-unit-of-flow on the edges. Selfish users are conscious both of the
travel latency and the monetary cost on a path. It is by now known that such taxes
exist even when users are heterogeneous, i.e., they are divided into classes where
each class has a different sensitivity level towards paying taxes [8, 10, 25]. See also
the work in [4].

In the same way Stackelberg routing establishes partial control over the users by
centrally coordinating only an α fraction of them, we examine whether similar effects
can be achieved when only an α fraction of the users pay taxes. Equivalently, one
can think of the remaining 1 − α fraction of the users as tax-evaders having a zero
sensitivity to taxes. In Sect. 6 we show that there is a set of edge taxes so that the
price of anarchy obtained is equal to the price of anarchy of the SCALE policy. As
the fraction of law-abiding citizens increases from 0 to 1, the system cost is improved
accordingly.

This work was first published as a McMaster University technical report [11]. In-
dependently of our work, Correa and Stier-Moses [5] and Swamy [23] have obtained
results for general latency functions. Other recent work on Stackelberg routing in-
cludes [9, 21].

2 Preliminaries

A directed network G = (V ,E), with parallel edges allowed, is given on which a set
of users each want to route an infinitesimal amount of flow (traffic) from a specified
origin to a destination node in G. Users are divided into k classes (commodities).
The demand of class i = 1, . . . , k, is di > 0 and the corresponding origin–destination
pair is (si , ti ). A feasible vector x is a valid flow vector (defined on the path or edge
space as appropriate) that satisfies the standard multicommodity flow conventions and
routes demands di for every commodity i. We use feasible flow vectors throughout
the paper to characterize traffic patterns. We use K to denote the (convex) set of all
the feasible vectors. As in [15] we assume separable costs: each edge e is assigned a
nonnegative, nondecreasing latency function le(fe) that gives the delay experienced
by any user on e due to congestion caused by the total flow fe that passes through e.
We also assume the standard additive model: for a path P , lP (f ) = ∑

e∈P le(fe).
Stackelberg policies can be classified as weak or strong [18]. A weak Stackel-

berg policy controls demand αdi from each commodity for a parameter α ∈ (0,1).
A strong Stackelberg policy gives more power to the coordinator: he can control as
much demand from each commodity as he sees fit under the condition that the total
demand controlled equals α

∑k
i=1 di . In the single-commodity case, strong and weak

policies coincide.
Let f ∗ be the flow vector of the selfish users and f̄ the strategic flow of the coor-

dinated users. The additive cost model makes it easy to view our flows sometimes as
path flows and sometimes as edge flows. The system cost of feasible flow x is defined
as

∑
P xP lP (x). Let Ceq := ∑

P (f ∗
P + f̄P )lP (f ∗ + f̄ ) denote the cost at equilibrium.

We denote by f opt a flow that optimizes the system cost and the optimum itself as
Copt, i.e., Copt := ∑

P f
opt
P lP (f opt). The SCALE policy is a weak one defined by set-

ting f̄e := αf
opt
e for every e. Note that this is equivalent to setting f̄P := αf

opt
P for all
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paths P . The strong LLF policy imposes a total order on the paths used by all com-
modities based on nondecreasing lP (f opt) values and breaking ties arbitrarily. It then
saturates paths one by one from the largest latency to the smallest until the total de-
mand of the controlled users equals α

∑k
i=1 di . By saturating a path P , we mean that

f̄P := f
opt
P . Note that the last path P∗ in the ordering that is assigned positive flow

may carry less than f
opt
P ∗ . P∗ is assigned as much flow as possible without exceeding

a total of α
∑k

i=1 di .
In this work we will use the concept of β-function defined by Correa et al. [6]. Let

L be a family of continuous and non-decreasing latency functions. For every function
l ∈ L and every value v ≥ 0, let us define:

β(v, l) := 1

vl(v)
max
x≥0

{x(l(v) − l(x))}.

In addition, let us define

β(l) := sup
v≥0

β(v, l).

Then β(L) is defined as follows:

β(L) := sup
l∈L

β(l).

3 Linear Latency Functions

In this section, we examine the case of linear (or affine) latency functions. That is, for
all e, le(fe) = aefe + be, with ae, be ≥ 0.

A First Attempt Existing upper bounds on the price of anarchy depend to a large ex-
tent on the behavior of the latency function on individual edges. This is what we call
the “edge-by-edge” approach. The definitions of the anarchy value α(L) by Rough-
garden [17] and the β(L) parameter by Correa et al. [6], where L is a class of latency
functions, are particularly revealing in this context. In order to gain intuition into the
problem we initially try an analysis of Stackelberg routing using similar arguments.
We assume that the coordinator uses the SCALE policy. Let β = β(L). The definition
of β implies that for any edge e

f
opt
e le(f

∗
e + f̄e) ≤ β(f ∗

e + f̄e)le(f
∗
e + f̄e) + f

opt
e le(f

opt
e ). (1)

We can get a better upper bound when edge e is underutilized by the selfish users.
Define an edge e to be light if f ∗

e ≤ cf̄e for a suitable c > 0. An edge which is not
light is called heavy. Define δ ∈ [0,1] such that

∑
e light f

opt
e l(f

opt
e ) = (1 − δ)Copt

and
∑

e heavy f
opt
e l(f

opt
e ) = δCopt.

Lemma 1 Let c, δ be defined as above. Then for a general network with linear la-
tency functions and a fraction α of coordinated users, SCALE achieves a price of

anarchy
Ceq
Copt

≤ 4
3 [1 − α2

4 (1 − δ)].
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Proof Since the le(·) functions are nondecreasing, we have that for the light edges
∑

e light

f
opt
e le(f

∗
e + f̄e) ≤

∑

e light

f
opt
e le(α(1 + c)f

opt
e ) ≤

∑

e light

f
opt
e le(f

opt
e ) (2)

under the assumption that α(1 + c) ≤ 1. For heavy edges, (1) yields that
∑

e heavy

f
opt
e le(f

∗
e + f̄e) ≤ β

∑

e heavy

(f ∗
e + f̄e)le(f

∗
e + f̄e) +

∑

e heavy

f
opt
e le(f

opt
e ). (3)

For linear latency functions it is well-known that β ≤ 1/4 [6], hence later we will use
the value β = 1/4. The analysis is affected by the amount of cost that f opt pays on
the light and heavy edges, respectively. From now on, we make use of the assumption
that the edge latency functions are linear. By summing (2), (3) over all the edges we
obtain that

∑

e

f
opt
e le(f

∗
e + f̄e) ≤ βCeq − β

∑

e light

(f ∗
e + f̄e)le(f

∗
e + f̄e) + Copt

≤ βCeq − βα2
∑

e light

f
opt
e le(f

opt
e ) + Copt

≤ βCeq + [1 − βα2(1 − δ)]Copt, (4)

where the second inequality is due to the fact that the le’s are linear and α ≤ 1.
Let f̂ := f opt − f̄ be the flow that remains if we remove flow f̄ from the optimal

flow f opt. Note that f̂ is a flow that satisfies demands d̂i ≤ di , for all commodities
i = 1, . . . , k. In the special case, where f̄ = αfopt, d̂i = (1 − α)di , for i = 1, . . . , k.
Then from the variational inequality
∑

e

le(f
∗
e + f̄e)(xe − f ∗

e ) ≥ 0, ∀x = flow that satisfies demands d̂i , i = 1, . . . , k

(5)
that f ∗ satisfies as a traffic equilibrium [7], we get the following for x := f̂ :

Ceq =
∑

e

(f ∗
e + f̄e)le(f

∗
e + f̄e) ≤

∑

e

(f̂e + f̄e)le(f
∗
e + f̄e) =

∑

e

f
opt
e le(f

∗
e + f̄e).

(6)
By using (6) in (4), and replacing β by 1/4 we get the lemma. �

If δ < 1, Lemma 1 yields a normal curve. Hence we would like to have δ as small
as possible. The parameter c must satisfy α(c + 1) ≤ 1, and, by definition, the bigger
c is the smaller δ potentially is. Therefore we should pick c := 1−α

α
.

Note, though, that, even with this choice of c, it may still be the case that δ = 1.
In this case, the bound we have calculated is not better than the classic 4/3 that holds
when no Stackelberg policy is used. The “edge-by-edge” approach led us to believe
that, at least for SCALE, the easy case is when f opt pays a substantial fraction of its
cost on edges that are underutilized by the selfish users. After completing our upper
and lower bound derivations we will have demonstrated instead that a small δ is the
difficult case.
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An Improved Upper Bound for SCALE In order to prove our main result for SCALE
and linear latency functions we will have to depart from the approach used above and
examine the network as a whole. If for every edge e, the latency function is of the
form le(fe) = aefe, it is well known that the price of anarchy is 1. The inefficiency of
selfish routing for general affine functions could be attributed, in a sense, to the exis-
tence of load-independent latency terms be > 0 in some le() functions. Our analysis
exploits the fact that the SCALE and LLF policies decrease the total influence of
these terms on the social cost at equilibrium.

Theorem 1 For general multicommodity networks with linear latency functions and
a fraction α of users coordinated by the SCALE policy, the price of anarchy is
bounded as follows

Ceq

Copt
≤ 4

3
− X

3
, where X = (1 − √

1 − α)(3
√

1 − α + 1)

2
√

1 − α + 1
.

Proof A lemma of Perakis [14] provides us with an important tool for our analy-
sis. It was originally derived to deal with asymmetric and non-separable cost func-
tions. Consider the latency function as a vector-valued function L : R

m+ → R
m+, with

L(f ) = Gf + b and m = |E|. In our case, G is a diagonal matrix containing the ae’s
and bT = [be]e∈E . In this notation Ceq = [L(f ∗ + f̄ )]T (f ∗ + f̄ ). From the proof
of Theorem 3 in [14] we can abstract away the following fact, which isolates the
contribution of the flow-dependent part of the latency to the total cost:

Lemma 2 ([14]) Given the notation above, let f ∈ K be a vector that satisfies

[L(f )]T (fopt − f ) ≥ 0. For any scalars a1, a2 ≥ 0 such that

[
a1G

T −GT

2
−G

2 a2G
T

]

is posi-

tive semi-definite, we have that

f T GT f opt ≤ a1f
T Gf + a2(f

opt)T Gf opt.

In our case, G is symmetric, and G 	 0 since G is a diagonal matrix with entries
G[e, e] = ae ≥ 0, for all e ∈ E. In this case, Lemma 2 can be reduced to a more
malleable form, which is implicit in [14]:

Lemma 3 ([14]) If for all edges e, le(fe) = aefe + be with ae, be ≥ 0, then for any
a1, a2 ≥ 0 that satisfy a1a2 ≥ 1/4

Ceq ≤ a1

∑

e

ae(f
∗
e + f̄e)

2 + a2

∑

e

ae(f
opt
e )2 +

∑

e

bef
opt
e .

Proof For every a1, a2 ≥ 0, we show that the semidefinite constraint of Lemma 2 is
equivalent to the following holding for every 2m-dimensional vector X = [X1 X2]T ,
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where X1,X2 are m-dimensional vectors:

[X1 X2] ·
⎡

⎢
⎣

a1G
−G

2−G

2
a2G

⎤

⎥
⎦ ·

[
X1
X2

]

≥ 0 ⇔ a1X
T
1 GX1 + a2X

T
2 GX2 − XT

1 GX2 ≥ 0.

(7)
If a1a2 ≥ 1

4 , then the following holds for any two numbers xe
1, x

e
2:

ae · (a1(x
e
1)2 + a2(x

e
2)

2 − xe
1x

e
2) ≥ ae · (√a1x

e
1 − √

a2x
e
2)

2 ≥ 0. (8)

By considering the coordinates xe
1, x

e
2 of X1,X2 separately, applying (8) to them, and

finally adding over all edges e, we get (7).
We show that for f = f ∗ + f̄ the second hypothesis of Lemma 2 is also satisfied.

By (5)

[L(f ∗ + f̄ )]T ((fopt − f̄ ) − f ∗) ≥ 0 ⇔ [L(f ∗ + f̄ )]T (fopt − (f ∗ + f̄ )) ≥ 0. (9)

Inequality (9) yields that

Ceq = [L(f ∗ + f̄ )]T (f ∗ + f̄ ) ≤ [L(f ∗ + f̄ )]T fopt = (f ∗ + f̄ )T GT f opt + bT fopt.

By using Lemma 2 to upperbound the right-hand side the proof is complete. �

Note that in order to apply Lemma 3 we are free to pick a1, a2 subject to the
constraints of the Lemma. This is exactly the point where the SCALE policy helps
us to get a better bound for the price of anarchy: while [14] also gets to pick a1, a2
subject to these constraints and the extra constraint a2 ≥ 1, we will not have to obey
the latter constraint. The details of the proof follow.

We rewrite the right-hand side of Lemma 3 in terms of paths:

Ceq ≤ a1

∑

P

(f ∗
P + f̄P )

∑

e∈P

ae(f
∗
e + f̄e) + a2

∑

P

f
opt
P

∑

e∈P

aef
opt
e +

∑

P

f
opt
P

∑

e∈P

be

= a1Ceq − a1

∑

P

(f ∗
P + f̄P )

∑

e∈P

be + a2

∑

P

f
opt
P

∑

e∈P

aef
opt
e +

∑

P

f
opt
P

∑

e∈P

be.

(10)

Let

� := −a1

∑

P

(f ∗
P + f̄P )

∑

e∈P

be +
∑

P

f
opt
P

∑

e∈P

be.

Then (10) can be written as

(1 − a1)Ceq ≤ a2

∑

P

f
opt
P

∑

e∈P

aef
opt
e + �. (11)

Since we have assumed that a1 ≥ 0 and be ≥ 0, for all e ∈ E, we get that

� ≤ −a1

∑

P

f̄P

∑

e∈P

be +
∑

P

f
opt
P

∑

e∈P

be. (12)
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By the definition of SCALE, we have that on every P , f̄P = αf
opt
P . Therefore

� ≤ (1 − a1α)
∑

P

f
opt
P

∑

e∈P

be. (13)

From (11), (13), if we require that a1 ≤ 1, we have that

Ceq

Copt
≤ max{a2,1 − αa1}

1 − a1
.

To obtain the best possible price of anarchy we solve the program:

min
max{a2,1 − αa1}

1 − a1
s.t.

a1a2 ≥ 1

4
,

a1 ≤ 1,

a1, a2 ≥ 0.

By setting

a1 := 1 − √
1 − α

2α
, a2 := 1 + √

1 − α

2

all constraints are satisfied (note that a1 ≤ 1
2 ), the two expressions in the max of the

objective function become equal, and Theorem 1 follows. �

A Nearly Tight Example for SCALE Consider the graph of the Braess para-
dox (Fig. 1). This is a directed graph with four vertices s, t, u, v and five edges
(s, u), (u, t), (u, v), (s, v), (v, t). There is a single commodity to be routed from s

to t of total demand 1. We set the latency of edge (u, v) to be identically equal to
zero. For the other edges we define a latency function l(x) which is parameterized

Fig. 1 The Braess paradox
instance



142 Algorithmica (2009) 53: 132–153

Fig. 2 Our upper and lower bounds for SCALE, as obtained in Sect. 3 plotted as functions of the fraction
α of the users that are coordinated

by α. For (s, u), (v, t) the latency is α+2
√

1−α

2−α−2
√

1−α
x, and the remaining two edges have

latency x + 2
√

1−α

2−α−2
√

1−α
. One can verify that in the optimal solution the upper and

lower paths carry flow 1/2 each, therefore Copt = 1
2 + α+6

√
1−α

2(2−α−2
√

1−α)
. In the Stack-

elberg equilibrium the coordinated users push α/2 units of flow along each of the
paths s − u − t and s − v − t . The selfish users push 1 − α units of flow along the

path s − u − v − t . The resulting price of anarchy is 2α−α2−2α
√

1−α+4
√

1−α

1+2
√

1−α
, and this

lower bound is at most an additive factor of 0.0323 away from our upper bound (this
maximum gap happens for α = 0.81 . . .). See Fig. 2.

Recall the quantity δ we defined earlier. In the example just produced, one can ver-

ify that the fraction of Copt that is paid on the heavy edges (s, u), (v, t) is a+2
√

1−α

2+4
√

1−α
,

which for every α ∈ [0,1] is less than 1/2. Moreover, in the case where δ is at least
some constant fraction, one can modify the proof of Theorem 1 to obtain an improved
price of anarchy. In particular, the right-hand side of (11) can be written as a sum of
two parts, one for the heavy edges and one for the light ones. The use of the additive
model makes easy the transition from a sum over paths to a sum over edges and vice
versa.

(1 − a1)Ceq ≤ a2

∑

e heavy

ae(f
opt
e )2 + �h + a2

∑

e light

ae(f
opt
e )2 + �l, (14)
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where

�h := −a1

∑

e heavy

(f ∗
e + f̄e)be +

∑

e heavy

f
opt
e be

and

�l := a1

∑

e light

(f ∗
e + f̄e)be +

∑

e light

f
opt
e be.

For the contribution of the light edges to the right-hand side of (14) one pro-
ceeds as before by using that f ∗

e ≥ 0, while for the contribution of the heavy
edges one uses that f ∗

e > cf̄e. The improved upper bound is obtained by mini-
mizing max{a2,1−a1(αc+α)}δ+max{a2,1−αa1}(1−δ)

1−a1
subject to the constraints a1a2 ≥ 1

4 ,

a1 ≤ 1, a1, a2 ≥ 0. The quantity c > 0 is the one from the definition of the light
edges.

By the preceding arguments and the plot in Fig. 2 we conclude that SCALE hits its
worst-case performance when δ is rather small. This occurs when the optimal solution
pays most of its cost on the light edges, i.e., edges that are underutilized by the selfish
users. Natural as this insight is, it appears to contradict the bound of Lemma 1 which
was obtained by the edge-by-edge approach. The apparent contradiction is resolved
when one notices that the bound of Lemma 1 is a weak one: even for δ = 0, it is larger
than the bound of Theorem 1 for all α ≤ 0.919 and becomes only marginally better
for larger values of α.

An Upper Bound for Strong LLF Let a path be good if it is used by the coordi-
nated users as dictated by strong LLF. Therefore, path P is good iff f̄P > 0. Paths
that are not good are called bad. There is a λ ∈ [0,1] such that

∑
P bad f

opt
P ×

[∑e∈P (aef
opt
e +be)] = (1 −λ)Copt and

∑
P good f

opt
P [∑e∈P (aef

opt
e +be)] = λCopt.

Theorem 2 Let λ be defined as above. Then for general multicommodity networks
with linear latency functions and a fraction α of users coordinated by the strong LLF
policy, the price of anarchy is bounded as follows:

Ceq

Copt
≤

⎧
⎪⎪⎨

⎪⎪⎩

4

3
, if λ ∈

[

0,
1

3

)

,

2(1 − λ)2

2 − λ − √
4λ − 3λ2

, if λ ∈
[

1

3
,1

]

.

Proof By decomposing the right hand side of (12) into two parts, one for the good
and one for the bad paths, we get

� ≤ −a1

∑

P good

f̄P

∑

e∈P

be +
∑

P good

f
opt
P

∑

e∈P

be − a1

∑

P bad

f̄P

∑

e∈P

be +
∑

P bad

f
opt
P

∑

e∈P

be.

(15)

Under the LLF policy, all good paths P but one are saturated, meaning f
opt
P = f̄P .

We can replace the offending path 
 (i.e., the one on which 0 < f̄
 < f
opt

 ) by two

copies of the same path in the flow decomposition of f opt, both with the same latency.



144 Algorithmica (2009) 53: 132–153

One copy gets flow f̄
 out of a total of f
opt

 and is included in the set of good paths,

and the other copy gets the rest f
opt

 − f̄
 and is included in the bad paths. With this

new path set, all good paths are saturated, i.e., f
opt
P = f̄P . All of the above can be

seen as just a change of the set of indices used in the
∑

notation for the paths P of
flow f opt. We use this new set of indices (decomposition) of f opt from now on. Then

−a1

∑

P good

f̄P

∑

e∈P

be +
∑

P good

f
opt
P

∑

e∈P

be = (1 − a1)
∑

P good

f
opt
P

∑

e∈P

be,

and (15) becomes

� ≤ (1 − a1)
∑

P good

f
opt
P

∑

e∈P

be − a1

∑

P bad

f̄P

∑

e∈P

be +
∑

P bad

f
opt
P

∑

e∈P

be. (16)

Recall that on a bad path P , f̄P = 0. If in addition we require that a2 ≤ 1, (11), (16)
yield

(1 − a1)Ceq ≤ a2

∑

P

f
opt
P

∑

e∈P

aef
opt
e + (1 − a1)

∑

P good

f
opt
P

∑

e∈P

be +
∑

P bad

f
opt
P

∑

e∈P

be

≤
∑

P bad

f
opt
P

[∑

e∈P

(aef
opt
e + be)

]

+ max{a2,1 − a1}
∑

P good

f
opt
P

[∑

e∈P

(aef
opt
e + be)

]

which, in turn, implies that

Ceq

Copt
≤ 1 − λ + max{a2,1 − a1}λ

1 − a1
. (17)

We will pick a1, a2, subject to all the constraints on them we have assumed so far,
so that we get the smallest possible upper bound on the price of anarchy from (17).

First we assume that a2 ≥ 1 − a1 and therefore (17) implies that
Ceq
Copt

≤ 1−(1−a2)λ
1−a1

.

Hence we would like to minimize 1−(1−a2)λ
1−a1

subject to the constraints a2 ≥ 1 −
a1, a1a2 ≥ 1

4 ,0 ≤ a1, a2 ≤ 1. For the case λ ∈ [ 1
3 ,1] the minimum is achieved by

picking a1 :=
√

4λ−3λ2−λ
4(1−λ)

, a2 := 1
4a1

, while for λ ∈ [0, 1
3 ) the minimum is achieved

by picking a1 := 1
4 , a2 := 1.

If we assume that a2 < 1 − a1, then we do not get a better upper bound. Therefore
our analysis of LLF yields the upper bounds given in the statement of Theorem 2. �

Since LLF picks the most expensive paths of f opt to saturate, and f̄ satisfies a
fraction α of the overall demand, we have that λ ≥ α (note that in the definition of
λ above, each flow path in the decomposition pays the latency of the path due to the
whole flow through the edges of the path). The upper bound for the price of anarchy
computed above is a decreasing function of λ, hence we can replace λ with α in it,
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and still get valid upper bounds that depend only on α. If λ > α our analysis yields a
price of anarchy bound that is even better.

4 Plots

In this section, we provide various plots of the curves for the linear latency func-
tions mentioned earlier. All the plots were obtained using Gnuplot. Our hard ex-
ample of Sect. 3 was a modification of the Braess paradox instance with respect to
the latency functions. The exact Braess paradox instance is defined in Fig. 1. One
can easily verify that on the latter instance the price of anarchy curve of SCALE is
4/3 − (1/3)(2α − α2). For LLF, both paths used by the optimum solution have equal
latency. Regardless of tie breaking, the curve of LLF is 4/3 − (1/3)(2α − 2α2) for
α ≤ 1/2 and 4/3 − (4α/3 − 2α2/3 − 1/3) for α > 1/2.

Figure 2 shows the upper and lower bounds we obtained in Sect. 3. Figure 3 shows
our LLF upper bound when λ = 1 in Theorem 2 and the corresponding lower bound
obtained from the Braess paradox. Finally, Fig. 4 compares the existing lower bounds
for the two policies on general networks, by drawing their performance on the Braess
paradox defined in the previous paragraph. For comparison reasons, in the same plot
we also give the performance of SCALE in our nearly tight example from Sect. 3.
Note that the latter is a significantly stronger lower bound for SCALE than the lower
bound obtained by the performance of the policy on the Braess paradox instance
defined above.

Fig. 3 Our upper bound for strong LLF, as obtained in Sect. 3, under the further assumption that λ = α.
The lower bound is the exact performance of LLF on the instance of the Braess paradox
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Fig. 4 The performance of the SCALE policy on our hard instance from Sect. 3 vs. the performance of
the LLF and SCALE policies on the instance of the Braess paradox. Observe that SCALE outperforms
LLF on the latter instance

It is worth remarking that there is a value of α for which our upper bound for
SCALE from Sect. 3 is very close to the lower bound for both policies. For α = 1/2
our upper bound is within an additive 0.027 factor from 7/6 which is the performance
of LLF on the Braess paradox instance.

5 General Latency Functions

The analysis of the linear case can be extended to general latency functions that sat-
isfy certain properties. Recall the vector-valued function notation L() for the latency
function. According to Perakis [14], L(x) satisfies the Jacobian similarity property if
it has a positive semidefinite Jacobian matrix (∇L(x) 	 0, for every x ∈ K) and there
exists constant A ≥ 1 such that for all w ∈ R

m, for all x, x̄ ∈ K

1

A
wT ∇L(x)w ≤ wT ∇L(x̄)w ≤ AwT ∇L(x)w.

The concept of Jacobian similarity originates from the Hessian similarity notion
in interior point methods (see e.g., [22]). The value A is known to be independent of
the matrix dimension, for positive definite ∇L(x). If the Jacobian matrix is strongly
positive definite, i.e., it has eigenvalues bounded away from zero, then A is upper-
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bounded by

maxx∈K λmax(S(x))

minx∈K λmin(S(x))
,

where S(x) = ∇L(x)+∇L(x)T

2 . If L(x) = Gx + b with G 	 0, then A = 1 [14].
In our case, ∇L(x) is a diagonal matrix with the diagonal entry corresponding to

edge e being equal to dle(xe)
dxe

. Such a matrix is positive semidefinite if these derivatives
are nonnegative for all x ∈ K . This is the natural and common assumption that the
latency functions are increasing. Therefore our results below will assume only that
the latency functions are increasing.

Generalizing the earlier remarks on the affine case we can abstract the following
from Perakis [14]:

Lemma 4 ([14]) If (i) for all edges e, le(fe) is a continuously differentiable function
with dle(fe)

dfe
≥ 0, and le(0) ≥ 0 for all f ∈ K and (ii) the matrix ∇L(x) satisfies the

Jacobian similarity property for some A ≥ 1, then

Ceq ≤ a1A
∑

e

(f ∗
e + f̄e)[le(f ∗

e + f̄e) − le(0)] + Copt

+ (a2 − 1)A
∑

e

f
opt
e [le(f opt

e ) − le(0)]

for any a1, a2 ≥ 0 that satisfy a1a2 ≥ 1/4.

We can define Z := −a1A
∑

e(f
∗
e + f̄e)le(0) + ∑

e f
opt
e le(0), and the lemma

yields that

(1 − a1A)Ceq ≤ [(a2 − 1)A + 1]
∑

e

f
opt
e [le(f opt

e ) − le(0)] + Z. (18)

For the SCALE policy Z ≤ (1 − αa1A)
∑

e f
opt
e le(0), and therefore we can obtain

that

(1 − Aa1)Ceq ≤ [(a2 − 1)A + 1]Copt − A(αa1 + a2 − 1)
∑

e

f
opt
e le(0)

under the conditions a1a2 ≥ 1/4, a1 ≤ 1/A, a1, a2 ≥ 0. We distinguish two cases:

1. αa1 + a2 ≥ 1: In this case, we have that

(1 − Aa1)Ceq ≤ [(a2 − 1)A + 1]Copt.

Hence we are looking for a1, a2 that solve the following minimization problem:

min
Aa2 + 1 − A

1 − Aa1
s.t.

αa1 + a2 ≥ 1,
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a1a2 ≥ 1

4
,

a1 ≤ 1

A
,

a1, a2 ≥ 0.

If we set a2 = 1/4a1 then we must have that

a1 /∈
(

1 − √
1 − α

2α
,

1 + √
1 − α

2α

)

.

The objective function is increasing for

a1 ∈
[
A − √

A2 + 4(1 − A)

4(A − 1)
,
A + √

A2 + 4(1 − A)

4(A − 1)

]

and decreasing for the other values of a1 in [0, 1
A

). If A−
√

A2+4(1−A)

4(A−1)
≤ 1−√

1−α
2α

,

then we set a1 := A−
√

A2+4(1−A)

4(A−1)
otherwise we set a1 := 1−√

1−α
2α

.
If we set a2 = 1 − αa1, then we must have

a1 ∈
(

1 − √
1 − α

2α
,

1 + √
1 − α

2α

)

.

If 1−√
1−α

2α
≤ 1

A
then we set a1 := 1−√

1−α
2α

, else the problem is infeasible. So this
case does not add something new to the previous bound.

2. αa1 + a2 ≤ 1: In this case, since le(0) ≤ le(f
opt
e ), for all e ∈ E, we have that

(1 − Aa1)Ceq ≤ [1 − Aαa1]Copt.

Hence we are looking for a1, a2 that solve the following minimization problem:

min
1 − Aαa1

1 − Aa1
s.t.

αa1 + a2 ≤ 1,

a1a2 ≥ 1

4
,

a1 ≤ 1

A
,

a1, a2 ≥ 0.

This case produces the same bounds as the previous one.

Hence we get the following theorem for general (increasing) latency functions and
the SCALE strategy:
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Theorem 3 Let A ≥ 1 be the Jacobian similarity property parameter for the latency
function matrix L, and α the coordinated fraction of flow that follows the SCALE
strategy. Then the price of anarchy is upper-bounded as follows:

Ceq

Copt
≤ A + 4(1 − A)a1

4a1(1 − Aa1)
,

where

1. If A−
√

A2+4(1−A)

4(A−1)
≤ 1−√

1−α
2α

then a1 = A−
√

A2+4(1−A)

4(A−1)
.

2. If A−
√

A2+4(1−A)

4(A−1)
> 1−√

1−α
2α

then a1 = 1−√
1−α

2α
.

Note that the bound of Theorem 3 depends only on the family of latency functions
(through A) and α. Also observe that for A slightly greater than 1, part 1 of Theorem 3
holds. In that case, the bound depends only on A. For the case A = 1, it is easy
to see that the analysis coincides with the analysis of the linear latency functions
case.

6 The Effect of Tax Evasion on Networks

So far we have assumed that the network is subject to a central coordinating authority
that can decide the routing of a fraction α of the overall traffic, while allowing the rest
to act selfishly. In this section, we explore whether the same effects can be achieved
when no such central authority exists, i.e., there is no notion of leader and follower in
the Stackelberg sense. Instead we wish to use taxes (tolls) on the edges of the network
assuming that all users are selfish but an α fraction of them are still law-abiding tax-
paying citizens. The remaining 1−α fraction does not believe in paying taxes. In this
section, we show that such taxes do exist.

We assume throughout the section that the latency functions le() are continuous,
increasing and take only nonnegative values. The flow for every origin-destination
pair (commodity) i = 1, . . . , k of rate di in the network is split into two parts: f̄ i

corresponds to the set of tax-payers with rate αdi and f i corresponds to the set of
tax-evaders with rate (1 − α)di . The tax payers can be heterogeneous: they attach an
importance factor a(i) > 0 to their disutility due to taxation. Let fe := ∑

i f
i
e , f̄e :=∑

i f̄
i
e , for all e. We are looking for the existence of nonnegative edge taxes be , for

all e ∈ E, such that for every commodity i (i) the tax-paying users f̄ i perceive edge
costs le(fe + f̄e) + a(i) · be, for all e ∈ E, (ii) the tax-evaders f i perceive edge
costs le(fe + f̄e), and (iii) the be’s are such that the tax-payers are forced to im-
plement the SCALE policy. The latter means that at the traffic equilibrium we must
have

k∑

i=1

f̄ i
e = αf

opt
e , ∀e ∈ E. (19)
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A key observation is that if, in addition, we assume that all latency functions le(·) are
strictly increasing, then conditions (19) are equivalent to

k∑

i=1

f̄ i
e ≤ αf

opt
e , ∀e ∈ E. (20)

We prove this similarly to Claim 1 in [10]. Assume for the sake of contradic-
tion that some inequalities in (20) are strict. Define the flow f̄ /α, by routing for
each commodity i, flow equal to f̄ i/α. Then for every edge e, f̄e/α ≤ f

opt
e , and

le(f̄e/α) ≤ le(f
opt
e ). By nonnegativity,

(f̄e/α)le(f̄e/α) ≤ f
opt
e le(f

opt
e ), ∀e ∈ E.

If for some edge e, f̄e/α < f
opt
e , it follows that 0 ≤ le(f̄e/α) < le(f

opt
e ). Therefore

for this particular edge

(f̄e/α)le(f̄e/α) < f
opt
e le(f

opt
e ).

It follows that
∑

e∈E(f̄e/α)le(f̄e/α) <
∑

e∈E f
opt
e le(f

opt
e ), which contradicts the op-

timality of f opt.
We use the framework of [1, 10] to incorporate constraints (20) into a complemen-

tarity problem that describes the traffic equilibrium in our case. The complementarity
problem (CP) is defined by constraints (21–31):

f̄ i
P

(∑

e∈P

le(fe + αf
opt
e )

a(i)
+

∑

e∈P

be − ūi

)

= 0 ∀i, ∀P ∈ Pi , (21)

f i
P

(∑

e∈P

le(fe + αf
opt
e ) − ui

)

= 0 ∀i, ∀P ∈ Pi , (22)

∑

e∈P

le(fe + αf
opt
e )

a(i)
+

∑

e∈P

be ≥ ūi ∀i, ∀P ∈ Pi , (23)

∑

e∈P

le(fe + αf
opt
e ) ≥ ui ∀i, ∀P ∈ Pi , (24)

ūi

( ∑

P∈Pi

f̄ i
P − αdi

)

= 0 ∀i, (25)

ui

( ∑

P∈Pi

f i
P − (1 − α)di

)

= 0 ∀i, (26)

∑

P∈Pi

f̄ i
P ≥ αdi ∀i, (27)

∑

P∈Pi

f i
P ≥ (1 − α)di ∀i, (28)
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be

(∑

i

f̄ i
e − αf

opt
e

)

= 0 ∀e ∈ E, (29)

∑

i

f̄ i
e ≤ αf

opt
e ∀e ∈ E, (30)

f i
P , f̄ i

P , be, ui, ūi ≥ 0 ∀P, e, i. (31)

To provide intuition we describe briefly the meaning of the constraints of (CP).
For details the reader is referred to [1, 10]. (CP) defines two traffic equilibria that
must be reached simultaneously. Constraints (21), (23), (25), (27), (29), (30) express
the equilibrium problem for the tax-payers and constraints (22), (24), (26), (28) the
equilibrium problem for the tax-evaders. Let us take a closer look at the equilibrium
problem for the tax-payers. Constraints (21), (23) express the Wardrop principle.
The variable ūi is the common disutility experienced by all tax-payers who belong
to commodity i. Constraint (27) enforces that tax-payers in user class i satisfy rate
at least αdi . If they satisfy a rate strictly greater than αdi , this comes for free since
by Constraint (25) ūi must be zero. In [1] it is shown that these constraints form an
exact formulation of the traffic equilibrium problem for the tax-payers. Constraints
(30) enforce (20). The Lagrange multipliers be for (30), appearing in (29), will be the
desired taxes. Similar considerations apply to the equilibrium problem for the tax-
evaders except of course that for them there are no “capacity” constraints like (30).

To prove the existence of the tax vector b with the properties (i)–(iii) described
above, it is enough to show that (CP) has a solution.

By using the fact that αf
opt
e is a known constant for every edge e when f opt is

known, it follows from [1] that the complementarity problem (CP′) below with vari-
ables f i

P ,ui has a solution (f ∗, u∗):

f i
P

(∑

e∈P

le(fe + αf
opt
e ) − ui

)

= 0 ∀i, ∀P ∈ Pi ,

∑

e∈P

le(fe + αf
opt
e ) ≥ ui ∀i, ∀P ∈ Pi , (CP′)

ui

( ∑

P∈Pi

f i
P − (1 − α)di

)

= 0 ∀i,

∑

P∈Pi

f i
P ≥ (1 − α)di ∀i,

f i
P , ui ≥ 0 ∀P, e, i.

In turn, by using the arguments from the proof of Theorem 2 in [10] we can show that
the following complementarity problem (CP′) with variables f̄ i

P , be, ūi is equivalent
to pair of primal and dual linear programs and also has a solution (f̄ ∗, b∗, ū∗):

f̄ i
P

(∑

e∈P

le(f
∗
e + αf

opt
e )

a(i)
+

∑

e∈P

be − ūi

)

= 0 ∀i, ∀P ∈ Pi ,



152 Algorithmica (2009) 53: 132–153

∑

e∈P

le(f
∗
e + αf

opt
e )

a(i)
+

∑

e∈P

be ≥ ūi ∀i, ∀P ∈ Pi , (CP′′)

ūi

( ∑

P∈Pi

f̄ i
P − αdi

)

= 0 ∀i,

∑

P∈Pi

f̄ i
P ≥ αdi ∀i,

be

(∑

i

f̄ i
e − αf

opt
e

)

= 0 ∀e ∈ E,

∑

i

f̄ i
e ≤ αf

opt
e ∀e ∈ E,

f̄ i
P , be, ūi ≥ 0 ∀P, e, i.

Now it is clear that (f ∗, f̄ ∗, b∗, u∗, ū∗) is a solution of (CP), and we can use taxes
b∗
e on each edge e to induce the tax-payers to follow the SCALE policy. Then all

our results about the effects of SCALE hold also for this setting. If the latency func-
tions are non-strictly monotone, we have obtained that there exists one tax-induced
equilibrium in which the tax-paying users implement the SCALE policy [1, 10]. If
the latency functions are strictly monotone, in every tax-induced equilibrium the tax
payers implement SCALE [1, 10]. We summarize our findings in the next theorem.

Theorem 4 Let xe be the total flow through edge e for some traffic assignment. If
for all e ∈ E, the functions le() are strictly monotone, and le() ≥ 0, there is a b ∈
R

|E|
+ such that if an α fraction of the users (called the tax-payers) experiences edge

disutility

le(xe) + a(i) · be, ∀e ∈ E,

while the rest experience disutility le(xe), for all e ∈ E, then the tax payers induce
in equilibrium the flow vector αf opt. Here f opt is the flow that minimizes the system
cost

∑
P xP lP (x).

7 Discussion

Perakis [14] derives the price of anarchy for non-separable asymmetric latency func-
tions. Therefore our results from Sect. 3 are bound to extend to that setting as well.

There are several issues that are left open. Can one get a strictly decreasing curve
for LLF? Moreover the difference between the upper and lower bounds for LLF is
currently considerable. For SCALE it would be interesting to close the rather small
gap that exists between our upper and lower bounds. It would be interesting also
if one could determine the instances on which SCALE outperforms LLF and vice
versa. Finally, and perhaps more importantly, is there an optimal Stackelberg strategy
for general multicommodity networks?
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